16 resultados para irradiation

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on the preparation of wavelike surface patterns with characteristic wavelengths on thin bilayers of poly(methyl methacrylate) on azobenzene liquid crystalline polymer films (LCP/PMMA) by irradiation of a single polarized pulsed laser beam. The formation of such patterns was influenced by the thickness of the upper layer and the laser fluence. We were also able to guide the wavelike pattern to have a specific orientation by placing an elastic polydimethylsiloxane (PDMS) mold on the surface of bilayer film prior to laser irradiation. Moreover, the property of the laser irradiation, that is, the selectivity through mask-projection systems, allowed us fabricating complicated micropattems for novel microdevices. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of highly-functionalized 2'-hydroxychalcones have been synthesized using a microwave-assisted Claisen-Schmidt condensation. Conversion of these 2'-hydroxychalcones to their corresponding flavanones was then performed utilizing protic ionic liquids (pIL) and microwave irradiation. This methodology drastically reduces reaction time to 15 minutes compared to typical thermal methods (24 hrs) and is tolerant to a broad range of functional groups. Several chalcones reported bear four and five substituents - a degree of substitution rarely reported in the literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, we demonstrate for the first time the successful fabrication of well-dispersed ultrafine silver nanoparticles inside metal-organic frameworks through a single step gamma irradiation at room temperature. HKUST-1 crystals are soaked in silver nitrate aqueous solution and irradiated with a Cobalt 60 source across a range of irradiation doses to synthesize highly uniformly distributed silver nano-particles. The average size of the silver nanoparticles across the Ag@HKUST-1 materials is found to vary between 1.4 and 3 nm for dose exposures between 1 and 200 kGy, respectively. The Ag@HKUST-1 hybrid crystals exhibit strong surface plasmon resonance and are highly durable and efficient catalytic materials for the reduction of 4-nitrophenol to 4-aminophenol (up to 14.46 × 10-3 s-1 for 1 kGy Ag@HKUST-1). The crystals can be easily recycled for at least five successive cycles of reaction with a conversion efficiency higher than 99.9%. The gamma irradiation is demonstrated to be an effective and environmental friendly process for the synthesis of nano-particles across confined metal-organic frameworks at room temperature with potential applications in environmental science.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A direct approach to functionalize and reduce pre-shaped graphene oxide 3D architectures is demonstrated by gamma ray irradiation in gaseous phase under analytical grade air, N2 or H2. The formation of radicals upon gamma ray irradiation is shown to lead to surface functionalization of the graphene oxide sheets. The reduction degree of graphene oxide, which can be controlled through varying the γ-ray total dose irradiation, leads to the synthesis of highly crystalline and near defect-free graphene based materials. The crystalline structure of the graphene oxide and γ-ray reduced graphene oxide was investigated by x-ray diffraction and Raman spectroscopy. The results reveal no noticeable changes in the size of sp2 graphitic structures for the range of tested gases and total exposure doses suggesting that the irradiation in gaseous phase does not damage the graphene crystalline domains. As confirmed by X-ray photoemission spectroscopy, the C/O ratio of γ-ray reduced graphene oxide is increasing from 2.37 for graphene oxide to 6.25 upon irradiation in hydrogen gas. The removal of oxygen atoms with this reduction process in hydrogen results in a sharp 400 times increase of the electrical conductivity of γ-ray reduced graphene oxide from 0.05 S cm-1 to as high as 23 S cm-1. A significant increase of the contact angle of the γ-ray reduced graphene oxide bucky-papers and weakened oxygen rich groups characteristic peaks across the Fourier transform infrared spectra further illustrate the efficacy of the γ-ray reduction process. A mechanism correlating the interaction between hydrogen radicals formed upon γ-ray irradiation of hydrogen gas and the oxygen rich groups on the surface of the graphene oxide bucky-papers is proposed, in order to contribute to the synthesis of reduced graphene materials through solution-free chemistry routes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A facile and highly efficient route to produce simultaneously porous and reduced graphene oxide by gamma ray irradiation in hydrogen is here demonstrated. Narrowly distributed nano-scale pores (average size of ∼3 nm and surface density >44,900 pore μm-2) were generated across 10 μm thick graphene oxide bucky-papers at a total irradiation dose of 500 kGy. The graphene oxide sheet reduction was confirmed to occur homogeneously across the structures by Fourier transform infrared spectroscopy and Raman analysis. This one-step, catalyst-free, high penetration and through-put technique, offers great promises potential for the mass production of reduced graphene oxide from cheap graphene oxide. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The sterile insect technique has been routinely used to eradicate fruit fly Bactrocera tryoni (Froggatt) incursions. This study considers whether fly quality in a mass-rearing facility can be improved by reducing irradiation doses, without sacrificing reproductive sterility. Pupae were exposed to one of five target irradiation dose ranges: 0, 40-45, 50-55, 60-65, and 70-75 Gy. Pupae were then assessed using routine quality control measures: flight ability, sex ratio, longevity under nutritional stress, emergence, and reproductive sterility. Irradiation did not have a significant effect on flight ability or sex ratio tests. Longevity under nutritional stress was significantly increased at 70-75 Gy, but no other doses differed from 0 Gy. Emergence was slightly reduced in the 50-55, 60-65, and 70-75 Gy treatments, but 40-45 Gy treatments did not differ from 0 Gy, though confounding temporal factors complicate interpretation. Reproductive sterility remained acceptable (> 99.5%) for all doses--40-45 Gy (99.78%), 50-55 Gy (100%), 60-65 Gy (100%), and 70-75 Gy (99.99%). We recommend that B. tryoni used in sterile insect technique releases be irradiated at a target dose of 50-55 Gy, providing improved quality and undiminished sterility in comparison with the current 70-75 Gy standard while also providing a substantial buffer against risk of under dosing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has previously been shown that irradiation with UV light increases the vitamin D content of certain mushroom species, but the effect on other nutrients is unknown, and is difficult to assess due to the complexity of the sample matrix. Here, an offline reversed phase × reversed phase two-dimensional liquid chromatography methodology was developed and applied to Agaricus bisporus mushrooms in order to demonstrate the potential of the technique and assess the effect of UV irradiation on the mushroom’s metabolic profile. The method allowed the detection of 158 peaks in a single analytical run. A total of 51 compounds including sugars, amino acids, organic and fatty acids and phenolic compounds were identified using certified reference standards. After irradiation of the mushrooms with UV for 30 s the number of peaks detected decreased from 158 to 150; 47 compounds increased in concentration while 72 substances decreased. This is the first time that two-dimensional liquid chromatography has been carried out for the metabolomic analysis of mushrooms. The data provide an overview of the gain/loss of nutritional value of the mushrooms following UV irradiation and demonstrate that the increased peak capacity and separation space of two-dimensional liquid chromatography has great potential in metabolomics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The modification of carbon fibre surfaces has been achieved using a novel combination of low power microwave irradiation (20 W) in both an ionic liquid (1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide) and an organic solvent (1,2-dichlorobenzene). The use of the ionic liquid was superior to the organic solvent in this application, resulting in a higher density of surface grafted material. As a consequence, carbon fibres treated in the ionic liquid displayed improved interfacial adhesion in the composite material (+28% relative to untreated fibres) compared to those treated in organic solvent (+18%). The methodology presented herein can be easily scaled up to industrially relevant quantities and represent a drastic reduction in both reaction time (30 min from 24 h) and energy consumption, compared to previously reported procedures. This work opens the door to potential energy and time saving strategies which can be applied to carbon fibre manufacture for high performance carbon fibre reinforced composites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coffee shell is an environmental concern to china along with steady growth of coffee production. This study attempt to characterize high specific surface area activated carbon (HSSA-AC). HSSA-AC was prepared from carbonized material which obtained from coffee shell by microwave irradiation. Textural properties and surface chemistry of HSSA-AC were found to be strongly depending on the activation time, KOH/C ratio and particle size. The textural properties of the samples were investigated by means of scanning electron microscope analyzer (SEM), cryogenic N2 adsorption, whereas, surface chemistry was probed through Fourier Transform Infrared (FTIR) spectrometer (Maldhure and Ekhe, 2011) and Hydrogen storage performance was tested by H2 adsorption. Maximum surface area of 3149 m2 g−1, Iodine adsorption value 2566 mg/g, Methylene Blue adsorption value 47.5 mL 0.1 g−1, the hydrogen adsorption value 0.91 wt% at 14 MPa and yield 39% was observed in case of microwave treated sample at activation time 9 min, KOH/C ratio 5 and particle size 0.25–0.71 mm. Results revealed usefulness of microwave treatment in influencing surface area of HSSA-AC which could be used in a hydrogen storage material research application.